HOW TO APPLY

The course is advertised through the press. The application forms are then obtainable from JKUAT, upon payment of a non-refundable fee of Ksh. 1,500 for Kenyan citizens and Kshs. 1,950 for Non-citizens.

TUITION FEES

For Kenyan citizens, tuition fees is Kshs 114,750.00 for the first semester of the first year, and reduces depending on the number of units offered in the other semesters. For non citizens, add an extra 20% to the amount in every semester.

ACCOMODATION

Accommodation may not be available and students are expected to make their own arrangements. The office of the Dean of Students may recommend suitable hostels for accommodation.

ENTRY REQUIREMENTS

Must have passed KCSE at a minimum average grade of C+ and at least C+ in English. In addition, the candidate must have passed Mathematics at KCSE with a minimum grade of C+ or credit in Bridging Mathematics.

OR

1.1 Have a minimum of 2 principle passes in Science subjects, one of which should be Mathematics, in General Certificate of Education (CGE) Advanced Level/ Kenya Advanced Certificate of Education (KACE).

OR

1.2 Have a Diploma in Mathematics or Statistics and with at least a credit pass from an Institution recognized by the University Senate,

OR

1.3 Have a Diploma in Applied Sciences, in which there has been a substantial mathematical content, with at least a credit pass in relevant subjects from an Institution recognized by the University Senate.

OR

1.4 Have a Higher National Diploma in Mathematics or Statistics from an institution recognized by the University Senate,

OR

1.5 Have any other qualifications accepted by the University senateas equivalent to 1.1 to 1.3 above. Students who hold any of the qualifications 1.2, 1.3 and 1.4 above may at the discretion of the School of Mathematical Sciences be admitted directly to the second year of the course in which case they may complete their course in a minimum of three academic years and maximum of five academic years.

Students who hold any of the qualification 1.5 above may at the discretion of the School of Mathematics and Physical Sciences be admitted directly to the third year of the course in which case they may complete their course in a minimum of two academic years and maximum of four academic years. However, applicants should note that these are MINIMUM requirements and do NOT guarantee any applicant automatic admission to the degree program.

For more information, Contact:

The Chairman, Dept. of Statistics and Actuarial Sciences P.O. Box 62000-00200, Nairobi
Tel: +254(67)52218, Fax:+254(67)52089
Email: stacs@fsc.jkuat.ac.ke

JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

Setting Trends in Higher Education, Research and Innovation

BACHELOR OF SCIENCE IN OPERATIONS RESEARCH

Department of Statistics and Actuarial Sciences

P.O. Box 62000-00200, Nairobi, Kenya. Telephone:+254(67)52218. Fax:+254(67)52089 Email: stacs@fsc.jkuat.ac.ke

INTRODUCTION

Operations Research is a field of science that uses mathematical and engineering methods to study optimization problems in Business, Management, Economics, Computer Science, Civil Engineering, Industrial Engineering and so on so as to make crucial, thorough, in-depth analysis to complex real life problems.

COURSE OBJECTIVE

A graduate operations research student is expected to be able to formulate mathematical, experimental and simulation models that will be able to define and evaluate real-life operational problems and alternatively recommend computational and manipulative methods that will ideally minimize losses and/or maximize profits.

EMPLOYMENT AVENUES

The students are expected to find employment in:-

- Research, Advisory and Consultancy firms.
- ♦ Logistic and Transportation Companies
- ♦ Manufacturing Companies
- ♦ Finance Sector
- ♦ Optimal Resource Allocation Companies
- ♦ Governmental and Non-governmental Institutions
- ♦ Engineering, Procurement and Health care Firms
- ♦ Military
- ♦ Education Sector

COURSE DURATION

The program takes a total of 9 semesters with 2 semesters per academic year. Each student is required to undertake a mandatory research project and practical attachment for a period of not less than 8 weeks at the end of the 8th semester. One may undertake any additional unit in their 2nd, 3rd and 4th year of study which does not count towards the classification of the degree but will appear on the transcript. One unit takes a series of 35 one lecture hours where a 3 hour practical period and a 2 hour tutorial period being equivalent to a 3 hour lecture.

COURSE OUTLINE

STA 2256

First Year	
First Semester University Unit HRD 2101	Communication Skills
Faculty Unit SMA2104	Mathematics for Science
Core Units	
SMA 2100	Discrete Mathematics
STA 2101	Algebra for Statistics and Finance
STA 2102	Information Technology for Statistics
STA 2104	Calculus for Statistics I
STA 2150	Fundamentals of Operations Research
STA 2190	Fundamentals of Project Management
Second Semester	
University Units	
HRD2102	Development studies and Social Ethics
SZL 2111	HIV/AIDS
Core Units	
STA 2100	Probability & Statistics I
STA 2105	Calculus for Statistics II
STA 2107	Database Management
STA 2152	Resource Allocation Models I
STA 2153	Financial Management and Forecasting I
STA 2154	Sustainability Management and Leadership Training
Second Year	Training
First Semester	
Core Units	
STA 2200	Probability & Statistics II
STA 2202	Computer Interactive Statistics
STA 2204	Calculus for Statistics III
STA 2250	Resource Allocation Models I
STA 2251	Financial Management and Forecasting II
STA 2252	Transportation Models I
STA 2253	Graph Theory
0 10 4	
Second Semester	
Core Units	Differential Equations
SMA 2231	Differential Equations
SMA 2201	Linear Algebra I
STA 2201	Probability & Statistics III
STA 2205	Statistical Programming I
STA 2254	Queuing Theory
STA 2255	Economic Models I

Transportations Models II

Third Year

First Semester

That beliester	
Core Units	
SMA 2306	Linear Algebra II
SMA 2321	Numerical Analysis
STA 2300	Theory of Estimation
STA 2300 STA 2302	Probability and statistics IV
STA 2302 STA 2306	
STA 2300 STA 2312	Real Analysis for Statistics
	Regression Modelling I
STA 2351	Stochastic Calculus I
Second Semester	
Core Units	
STA 2301	Tosts of Hymotheses
	Tests of Hypotheses
STA 2305	Stochastic Processes
STA 2308	Design and Analysis of Experiments I
STA 2310	Decision Theory
STA 2313	Research Methodology for Statistics
STA 2352	Dynamical Systems I
STA 2353	Queuing Theory II
Fourth Year	
First Semester	
University Unit	
HRD 2401	Entrepreneurship Skills
	• •
Core Units	
STA 2407	Multivariate Methods
STA 2408	Regression Modelling II
STA 2411	Design and Analysis of Experiments II
STA 2418	Stochastic Calculus II
STA 2450	Manpower Planning
STA 2451	Computational Mathematics
STA 2459	Project in Operations Research
Second Semester	J I
Core Units	
STA 2401	Time Series Analysis
STA 2402	Generalised Linear Models
STA 2422	Game Theory
STA 2453	Human Resource Management in
51A 2733	Operations Research
am	Operations research

Econometric Models II

Investment and Asset Management

Project in Operations Research

Third Semester

STA 2454

STA 2494

STA 2459

Industrial Attachment STA 2410