HOW TO APPLY

The course is advertised through the press. The application forms are then obtainable from JKUAT, upon payment of a non-refundable fee of Ksh. 1,500 for Kenyan citizens and Kshs. 1,950 for Non-citizens.

TUITION FEES

For Kenyan citizens, tuition fees is Kshs 125,700.00 for the first semester of the first year, and reduces depending on the number of units offered in the other semesters. For non citizens, add an extra 20% to the amount in every semester.

ACCOMODATION

Accommodation may not be available and students are expected to make their own arrangements. The office of the Dean of Students may recommend suitable hostels for accommodation.

ENTRY REQUIREMENTS

Must have passed KCSE at a minimum average grade of C+ and at least C+ in English. In addition, the candidate must have passed Mathematics at KCSE with a minimum grade of C+ or credit in Bridging Mathematics.

OR

1.1 Have a minimum of 2 principle passes in Science subjects, one of which should be Mathematics, in General Certificate of Education (CGE) Advanced Level/ Kenya Advanced Certificate of Education (KACE).

OR

1.2 Have a Diploma in Mathematics or Statistics and with at least a credit pass from an Institution recognized by the University Senate,

OR

1.3 Have a Diploma in Applied Sciences, in which there has been a substantial mathematical content, with at least a credit pass in relevant subjects from an Institution recognized by the University Senate.

OR

1.4 Have a Higher National Diploma in Mathematics or Statistics from an institution recognized by the University Senate,

OR

1.5 Have any other qualifications accepted by the University senateas equivalent to 1.1 to 1.3 above. Students who hold any of the qualifications 1.2, 1.3 and 1.4 above may at the discretion of the School of Mathematical Sciences be admitted directly to the second year of the course in which case they may complete their course in a minimum of three academic years and maximum of five academic years.

Students who hold any of the qualification 1.5 above may at the discretion of the School of Mathematics and Physical Sciences be admitted directly to the third year of the course in which case they may complete their course in a minimum of two academic years and maximum of four academic years. However, applicants should note that these are MINIMUM requirements and do NOT guarantee any applicant automatic admission to the degree program.

For more information, Contact:

The Chairman, Dept. of Statistics and Actuarial Sciences P.O. Box 62000-00200, Nairobi
Tel: +254(67)52218, Fax:+254(67)52089
Email: stacs@fsc.jkuat.ac.ke

JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

Setting Trends in Higher Education, Research and Innovation

BACHELOR OF SCIENCE IN FINANCIAL ENGINEERING

Department of Statistics and Actuarial Sciences

P.O. Box 62000-00200, Nairobi, Kenya. Telephone:+254(67)52218. Fax:+254(67)52089 Email: stacs@fsc.jkuat.ac.ke

INTRODUCTION

Financial Engineering is a multidisciplinary field of study that uses mathematical methods to provide solutions in problems in finance. They use concepts and methods from computer science, physics, statistics and mathematics

COURSE OBJECTIVE

A graduate financial engineering student is expected to be able to solve financial problems in corporate finance, portfolio management, risk management, quantitative analysis and trading for companies using various mathematical analytical tools.

EMPLOYMENT AVENUES

The students are expected to find employment in:-

- Financial Services and Investment Companies.
- ♦ Banking Sector
- Insurance and Brokerage Firms.
- ♦ Fund and Asset Management Firms
- Research, Advisory and Consultancy firms.
- Governmental and Non-governmental Institutions.
- Software development companies.
- ♦ Education Sector.

COURSE DURATION

The program takes a total of 9 semesters with 2 semesters per academic year. Each student is required to undertake a mandatory research project and practical attachment for a period of not less than 8 weeks at the end of the 8th semester. One may undertake any additional unit in their 2nd, 3rd and 4th year of study which does not count towards the classification of the degree but will appear on the transcript. One unit takes a series of 35 one lecture hours where a 3 hour practical period and a 2 hour tutorial period being equivalent to a 3 hour lecture.

COURSE OUTLINE

First Year

STA 2225

Communication Skills
Communication Skins
Mathematics for Science
Discrete Mathematics
Algebra for Statistics and Finance
Information Technology for Statistics
Business Economics I
Calculus for Statistics
Fundamentals of Financial Engineering
rundamentals of Financial Engineering
Davidanment studies and Social Ethios
Development studies and Social Ethics HIV/AIDS
HIV/AIDS
Probability & Statistics I
Calculus for Statistics II
Business Economics II
Database Management
Foundations of Financial Mathematics
Financial Accounting Theory
Lincor Algobro I
Linear Algebra I
Probability and Statistics II
Computer Interactive Statistics
Calculus for Statistics III
Fixed Income Securities Analysis
Money and Banking
Cost & Management Accounting
Differential Equations
Probability & Statistics III
Statistical Programming
Linear Programming
Theory of Insurance Practice
Business Finance & Financial
Statements Analysis

Supply Chain & Fund Management

Third Year

First Semester

First Semester	
Core Units	
SMA 2305	Complex Analysis
SMA 2306	Linear Algebra II
SMA 2321	Numerical Analysis
STA 2300	Theory of Estimation
STA 2302	Probability and Statistics IV
STA 2303	Design and Analysis of Sample Surveys
STA 2306	Real Analysis for Statistics
STA 2312	Regression Modelling I
Second Semester	
Core Units	
STA 2301	Tests of Hypotheses
STA 2305	Stochastic Processes
STA 2313	Research Methodology for Statistics
STA 2320	Investment Analysis & Portfolio Theory
STA 2321	Legal Environment of Business
STA 2322	Risk Management in Financial
	Institutions
STA 2401	Time Series Analysis
	·
Fourth Year	
T	
First Semester	
University Unit	
HRD 2401	Entrepreneurship Skills
111.10 2 101	Emily Simp
Core Units	
STA 2408	Regression Modelling II
STA 2/18	Stochastic Colombia

31A 2400	Regression Modelling II
STA 2418	Stochastic Calculus
STA 2420	Financial Time Series
STA 2421	Derivative Securities and Markets
STA 2424	Behavioural Finance
STA 2428	Optimization Techniques
STA 2429	Project in Financial Engineering

Second Semester

Second Semicater	
Core Units	
STA 2419	Computational Finance
STA 2422	Game Theory
STA 2423	Financial Risk Measurement
STA 2425	Life, Health and Social Insurance
STA 2426	Extreme Financial Risk Measurement
STA 2427	Corporate Finance
STA 2429	Project in Financial Engineering

Third Semester

STA 2410 Industrial Attachment