HOW TO APPLY

The course is advertised through the press. The application forms are then obtainable from JKUAT, upon payment of a non-refundable fee of Ksh. 1,500 for Kenyan citizens and Kshs. 1,950 for Non-citizens.

TUITION FEES

For Kenyan citizens, tuition fees is Kshs 125,700.00 for the first semester of the first year, and reduces depending on the number of units offered in the other semesters. For non citizens, add an extra 20% to the amount in every semester.

ACCOMODATION

Accommodation may not be available and students are expected to make their own arrangements. The office of the Dean of Students may recommend suitable hostels for accommodation.

ENTRY REQUIREMENTS

Must have passed KCSE at a minimum average grade of C+ and at least C+ in English. In addition, the candidate must have passed Mathematics at KCSE with a minimum grade of C+ or credit in Bridging Mathematics.

OR

1.1 Have a minimum of 2 principle passes in Science subjects, one of which should be Mathematics, in General Certificate of Education (CGE) Advanced Level/ Kenya Advanced Certificate of Education (KACE).

OR

1.2 Have a Diploma in Mathematics or Statistics and with at least a credit pass from an Institution recognized by the University Senate,

OR

1.3 Have a Diploma in Applied Sciences, in which there has been a substantial mathematical content, with at least a credit pass in relevant subjects from an Institution recognized by the University Senate.

OR

1.4 Have a Higher National Diploma in Mathematics or Statistics from an institution recognized by the University Senate,

OR

1.5 Have any other qualifications accepted by the University senateas equivalent to 1.1 to 1.3 above. Students who hold any of the qualifications 1.2, 1.3 and 1.4 above may at the discretion of the School of Mathematical Sciences be admitted directly to the second year of the course in which case they may complete their course in a minimum of three academic years and maximum of five academic years.

Students who hold any of the qualification 1.5 above may at the discretion of the School of Mathematics and Physical Sciences be admitted directly to the third year of the course in which case they may complete their course in a minimum of two academic years and maximum of four academic years. However, applicants should note that these are MINIMUM requirements and do NOT guarantee any applicant automatic admission to the degree program.

For more information, Contact:

The Chairman, Dept. of Statistics and Actuarial Sciences P.O. Box 62000-00200, Nairobi
Tel: +254(67)52218, Fax:+254(67)52089
Email: stacs@fsc.jkuat.ac.ke

JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

Setting Trends in Higher Education, Research and Innovation

BACHELOR OF SCIENCE IN BIOSTATISTICS

Department of Statistics and Actuarial Sciences

P.O. Box 62000-00200, Nairobi, Kenya. Telephone:+254(67)52218. Fax:+254(67)52089 Email: stacs@fsc.jkuat.ac.ke

INTRODUCTION

Biostatistics is a branch of science that advances statistical science and its application to identify several health risks. Biostatisticians run clinical trials, surveys, lab experiments, focus groups, field observations, and case studies facilitating the collection, compilation, interpretation, summarization and analysis of such data to draw meaningful conclusions.

COURSE OBJECTIVE

A graduate biostatistics student is expected to be able to use statistical tools to help answer pressing research questions in medicine, biology and public health e.t.c on aspects such as how a new drug works or what are the causes of some disease and so on. The student should be able to comfortably perform experiments, clinical trials, surveys, lab experiments and so on in health sciences.

EMPLOYMENT AVENUES

The students are expected to find employment in:-

- Research, Advisory and Consultancy firms.
- ♦ Pharmaceutical Companies
- ♦ Advertisement Companies
- ♦ Healthcare and Medical Sector
- Governmental and Non-governmental Institutions
- ♦ Education Sector

COURSE DURATION

The program takes a total of 9 semesters with 2 semesters per academic year. Each student is required to undertake a mandatory research project and practical attachment for a period of not less than 8 weeks at the end of the 8th semester. One may undertake any additional unit in their 2nd, 3rd and 4th year of study which does not count towards the classification of the degree but will appear on the transcript. One unit takes a series of 35 one lecture hours where a 3 hour practical period and a 2 hour tutorial period being equivalent to a 3 hour lecture.

COURSE OUTLINE

First Year

First Semester University Unit HRD 2101	Communication Skills
Faculty Unit	
SMA2104	Mathematics for Science
Core Units	
SMA 2100	Discrete Mathematics
STA 2101	Algebra for Statistics and Finance
STA 2102	Information Technology for Statistics
STA 2130	Fundamentals of Biostatistics
STA 2104	Calculus for Statistics
HBB 2150	Introduction to Biochemistry
Second Semester	
University Units	
HRD2102	Development studies and Social Ethics
SZL 2111	HIV/AIDS
522 2111	III vii III S
Core Units	
SBT 2172	Cell Biology
STA 2100	Probability & Statistics I

SZL 2102 Second Year

STA 2105

STA 2107

STA 2110

First Semester Core Units

SBT 2201	Cell Biology and Genetics
SMA2201	Linear Algebra II
STA 2200	Probability & Statistics II
STA 2202	Computer Interactive Statistics
STA 2204	Calculus for Statistics III
STA 2206	Ordinary Differential Equation for Statistics
STA 2210	Fundamentals of Enidemiological Methods

Calculus for Statistics II

Database Management

Fundamentals of Vital Statistics

Introduction to Animal Physiology

Second Semester

Core Units

STA 2201	Probability & Statistics III
STA 2203	Time series Analysis I
STA 2205	Statistical Programming
STA 2207	Partial Differential Equations for Statistics
STA 2208	Design and Analysis of Experiments I
STA 2232	Ecological Sampling Techniques
SZL 2422	Bioethics and Biosafety

Elective Unit

SMA 2321 Numerical Analysis I

Third Year

First Semester	
Core Units	
SMA 2306	Linear Algebra II
SMA 2321	Numerical Analysis
STA 2300	Theory of Estimation
STA 2302	Probability and statistics IV
STA 2303	Design and Analysis of Experiments I
STA 2306	Real Analysis for Statistics
STA 2312	Regression Modelling I
Second Semester	
Core Units	
STA 2301	Tests of Hypotheses
STA 2305	Stochastic Processes
STA 2308	Bayesian Inference I
STA 2313	Research Methodology for Statistics
STA 2333	Categorical Data Analysis
STA 2337	Design and Analysis of Clinical Trials
STA 2404	Non-Parametric Methods
Fourth Year	
First Semester	
University Unit	
HRD 2401	Entrepreneurship Skills
Core Units	
STA 2407	Multivariate Methods
STA 2408	Regression Modelling II
STA 2417	Bayesian Inference II

Second Semeste

STA 2436

STA 2432

STA 2438

STA 2439

Second Semest	er
Core Units	
STA 2402	Generalized Linear Mixed Models
STA 2414	Survival Data Analysis
STA 2416	Statistical Computing
STA 2434	Statistical Genetics
STA 2435	Longitudinal Data Analysis
STA 2437	Spatial Statistics and Disease Mapping
STA 2439	Project in Biostatistics

Modelling Infectious Diseases

Computational Biology

Project in Biostatistics

Principles of Non-Linear Models

Third Semester

STA 2410 Industrial Attachment